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1 3 THE MAP AND RELATED DECODING
ALGORITHMS

In a coded communication system with equiprobable signaling, MLD minimizes
the word error probability and delivers the most likely codeword associated with
the corresponding received sequence. This decoding has two drawbacks. First,
minimization of the word error probability is not equivalent to minimization of
the bit error probability. Therefore, MLD becomes suboptimum with respect
to the bit error probability. Second, MLD delivers a hard-decision estimate of
the received sequence, so that information is lost between the input and output
of the ML decoder. This information is important in coded schemes where the
decoded sequence is further processed, such as concatenated coding schemes,
multi-stage and iterative decoding schemes.

In this chapter, we first present a decoding algorithm which both minimizes
bit error probability, and provides the corresponding soft information at the
output of the decoder. This algorithm is referred to as the MAP (maximum a-
posteriori probability) decoding algorithm [1]. Unfortunately, the trellis-based
implementation of the MAP algorithm is much more complex than that of the
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trellis-based MLD algorithms presented in the previous chapters. Consequently,
suboptimum versions of the MAP algorithm with reduced decoding complex-
ity must be considered for many practical applications. In Section 13.2, we
present a near-optimum modification of the MAP algorithm, referred to as the
Max-Log-MAP (or SOVA) decoding algorithm [34, 39, 40]. This near-optimum
algorithm performs within only few tenths of a dB of the optimum MAP de-
coding algorithm while reduces decoding complexity drastically. Finally, the
minimization of the bit error probability in trellis-based MLD is discussed in
the last section.

13.1 THE MAP DECODING ALGORITHM

Consider a binary (N, K) linear block code C. Let u = (u1,u2,...,un) bea

codeword in C. Define P(A|B) as the conditional probability of the event A

given the occurrence of the event B. The MAP decoding algorithm evaluates

the most likely bit value u; at a given bit position i based on the received

sequence T = (r,72,...,7n). It first computes the log-likelihood ratio
Pu; = 1r)

& P(u: = 0r)

for 1 <i < N, and then compares this value to a zero-threshold to decode u;

L;%1o (13.1)

as

(13.2)
0 for L; <0

The value L; represents the soft information associated with the decision on u;.

{ 1 for L; >0,
u; =

It can be used for further processing of the sequence u delivered by the MAP
decoder.

In the N-section trellis diagram for the code, let B;(C) denote the set of
all branches (o;_1,0:) that connect the states in the state space Ti-1(C) at
time-(i—1) and the states in the state space L;(C) at time-ifor 1 <i < N. Let
B%(C) and B}(C) denote the two disjoint subsets of B;(C) that correspond to
the output code bits u; = 0 and u; = 1, respectively, given by {(3.3). Clearly

B;(C) = B}(C)UB}(C) (13.3)
for 1 <1 < N. For (¢',0) € Bi(C), we define the joint probability

Xi(o',0) £ P(oi-y =d'0,=0;T) (13.4)
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for 1 <1 < N. Then

P(u;=0;r) = 2 Ai(¢'y0), (13.5)
(o’ ,0)€BY(C)
Pui=Lir)= Y (o). (13.6)

(0',0)€B(C)

The MAP decoding algorithm computes the probabilities A;(¢’,0) which are
then used to evaluate P(u; = 0|r) and P(u; = 1ir) in (13.1) from (13.5) and
(13.6).

For1<i<N,1<l{<m<N,and r* £ (r,,r141,...,7n), we define the
probabilities

ai(c) & P(o; =oa;r}), (13.7)
Bi(o) & P(rlloi=0), (13.8)
vi(e',o) & P(o;=o;iriloioy =0')

P(ri(oi-1,0:) = (¢',0)) Ploi = gloi-y = o). (13.9)
Then, for a memoryless channel,
Ai(e',0) = a;1(0') vi(c',¢) Bi{o) (13.10)

for 1 < ¢ € N, which shows that the values 3;(¢’,0) can be evaluated by
computing all values a,(c), Bi(¢) and i(¢’, o). Based on the total probability
theorem, we can express a;(c¢), for 1 < i < N, as follows:

o) = T Ploimin=oiriting
o'€Li_1(C)

= 2 aa(e)we). (13.11)
o'€X,_4(C)

Similarly, for 1 <i < N,

Bile) = Z P(T,’+1;1‘ﬁ_2;0i+1 =o'lo; = o)
o'€L,41(C)
= Y B vin(rna) (13.12)

o' €Ti1({C)



246 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

From (13.11), we see that the probabilities a;(¢) with 1 £ i < N can be
computed recursively from the initial state oo to the final state o, of the N-
section trellis for code C, once vi(0',0)'s are computed. This is called the
forward recursion. From (13.12), we see that the probabilities 8;(c) with
1 < i < N can be computed recursively in backward direction from the final
state oy to the initial state og of the N-section trellis of C. This is called the
backward recursion.
For the AWGN channel with BPSK transmission, we have

P(riloi-y =d'joi=0) = (7rNo)‘1/2 exp(~(ri — ¢)}/No) 6i(e’,0), (13.13)

where

, |1 if(e0)eBi(C),
5i(e",9) '{ 0 if (¢',0) g Bi{C). (13.14)

For 8;(¢’,0) = 1, ¢; = 2u; — 1 is the transmitted signal corresponding to the
label u; of the branch (¢’,0). Based on (13.13), :(¢',0) is proportional to the

value
wi(o’, o) = exp(—(r: — ¢;)?/No) 8.(c",0) Poi = cloi_y = o). (13.15)

Note that in many applications such as MAP trellis-based decoding of linear
codes, the a-priori probability of each information bit is the same, so that all
states o € £;(C) are equiprobable. Consequently, P(o; = oloi_; = ') be-
comes a constant that can be discarded in the definition of w;(c’, o). However,
this is not true in general. For example, in iterative or multi-stage decoding
schemes P(o; = o|o;_; = o') has to be evaluated after the first iteration, or
after the first decoding stage. Since in (13.1), we are interested only in the
ratio between P(u; = 1|r) and P(u; = 0|r), Xi(o',0) can be scaled by any
value without modifying the decision on u;. Based on these definitions, ai(c)
can be computed recursively based on (13.11) using the trellis diagram from

the initial state op to the final state oy as follows:
(1) Assume that a;_,(¢’) has been computed for all states o' € £;4,(C).

(2) In the i-th section of the trellis diagram, associate the weight wi(c’,0)
with each branch (¢’,0) € B;(C).
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(3) For each state o € L;(C), evaluate and store the weighted sum

ai(o) = Z wi(o',0) ai-y (o). (13.16)

0’€L_1(C):4i(0’,0)=1

The initial conditions for this recursion are ag(og) = 1 and ag(¢) = 0 for
o # 0p.

Similarly, B;(c) can be computed recursively based on (13.12) using the
trellis diagram from the final state o to the initial state g as follows:

(1) Assume that §;,,(c) has been computed for all states ¢’ € £,4,(C).

(2) In the (i + 1)-th section of the trellis diagram, associate the weight
wi;1(0,0’) with each branch (g,0') € B;4+1(C).

(3) For each state o € L;(C), evaluate and store the weighted sum

Bi(o) = > wir1(0,0") Birr (o). (13.17)

a'€L, 1 (C)ib, o1 (00")=1

The corresponding initial conditions are 85 (o) =: 1 and Bn(0) = 0 for o # oy.

The MAP decoding algorithm requires one for »ard recursion from oy to oy,
and one backward recursion from o to g to evaluate all values a;(¢) and 83;(o)
associated with all states o; € Z,(C), for 1 < ¢ € N. These two recursions
are independent of each other. Therefore, the forward and backward recursions
can be executed simultaneously in both directions along the trellis of the code
C. This bidirectional decoding reduces the decoding delay. Once all values of
ai(o) and Bi(o) for 1 < i < N have been deterriined, the values L; in (13.1)
can be computed from (13.5), (13.6), (13.9) and [13.10).

13.2 THE SOVA DECODING ALGORITHM

The MAP decoding algorithm presented in the previous section requires a large
number of computations and a large storage to «ompute and store the proba-
bilities a;(0), B:i(o) and vi(o’, o) for all the stat:s o and state pairs (¢',0) in
the trellis for the code to be decoded. For a lo1.g code with large trellis, the
implementation of the MAP decoder is practical y impossible. Also, the MAP
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decoding algorithm computes probability values, which require much more com-
plicated real value operations than the real additions performed by trellis-based
MLD algorithms, such as the Viterbi decoding and RMLD algorithms.

In this section, we present an algorithm for which the optimum bit error
performance associated with the MAP algorithm is traded with a significant
reduction in decoding complexity. This algorithm is known as the Max-Log-
MAP algorithm or soft-output Viterbi algorithm (SOVA), as it performs
the same operations as the Viterbi algorithm, with additional real additions
and storages.

For BPSK transmission, (13.1) can be rewritten as

= log [( Z P c|r)) / ( Z P(c|r))] , (13.18)

for 1 <i < N and ¢; = 2u; — 1. Based on the approximation
N
log( 261 log rr;a.x {&; 1), (13.19)
j=1 )

we obtain from (13.18)

L; =~ log( max P(c|r)) — log( max P(c|r)). (13.20)
For each code bit u;, the Max-Log-MAP algorithm [40] approximates the cor-
responding log-likelihood ratio L; based on (13.20).
For the AWGN channel with BPSK transmission, we have

P(clr) = P(rlc)P(c)/P(r)
= (xNp)~M2e~ Tintri=e)’/Nop()/P(r).  (13.21)
If ¢! = (c},edy. 00065 1+€}jy---) and c® = (c?,cg,...,cgj_l,cgj,...) represent

the codewords corresponding to the first term and the second term of (13.20),
respectively, it follows from (13.21) that for equiprobable signaling, the approx-
imation of L; given in (13.20) is proportional to the value

TR D (13.22)
F:i#ied#c)
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We observe that one of the terms in (13.20) corresponds to the MLD solution,
while the other term corresponds to the most likely codeword which differs from
the MLD solution in u;. Consequently, in Max-Log-MAP or SOVA decoding,
the hard-decision codeword corresponding to (13.20) is the MLD codeword
and (13.22) is proportional to the difference of squared Euclidean distances
(SED) |Ir — ¢!jf* = |Ir — c®||>. For any two codewords ¢ and ¢/, we define
[llr — ¢l = |Ir — ||| as the reliability difference between c and ¢’.

For simplicity, we consider the trellis diagram of a rate-1/2 antipodal con-
volutional code C. Hence, the two branches that merge into each state have
different branch labels, as described in Figure 10.1. Also, we assume that
the trellis diagram for the code C is terminated so that N encoded bits are
transmitted. Generalization of the derived results to other trellis diagrams is
straightforward, after proper modification of the notations. At each state o;_,
of the state space L;_;(C) at time-(i — 1), the SOVA stores the cumulative
correlation metric value M(o;_;) and the corresponding decoded sequence

&(oiz1) = (éu(oi-1) C2(0imn)s- s opimn) -1 (Ti -1 )y E2iimny(0i-1)) s (13.23)

as for the Viterbi algorithm. In addition, it also ctores the reliability measures

Loioy) = (L1(01 1 Lz(aa—l),---,Lz(i-x)—x(as-l),f»z(i-x)(ai—1)), (13.24)

associated with the corresponding decision &(e;—,).

At the decoding time-i, for each state o; in the state space £;(C), the SOVA
first evaluates the two cumulative correlation rmretric candidates M(o}_,,0,)
and M (ai_l,a;) corresponding to the two paths terminating in state o; with
transitions from stateso}_; and 0?_,, respectively Asforthe Viterbi algorithm,
the SOVA selects the cumulative correlation met-ic

M(o; )—lg{lg}{M(U ~1:9i)}, (13.25)

and updates the corresponding pair (é2i-1(0:),¢2i(0:)) in the surviving path

&(0;) at state o;. Next, L(0;) has to be updated To this end, we define

A s 16{1 2){M(a ~1oi)} - m{%}{M(U. 1oi)} (13.26)

Based on (13.22) and the fact that the code considered is antipodal, we set

Loi—1(03) = Lai(0y) = A, (13.27)

-
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path-1 é L} o] Tin

j-1 j i i+1

Figure 13.1. Trellis description with respect to reliability values associated with bit-j at

state 04 y.

since A, represents the reliability difference between the two most likely code-
sequences terminating at state o; with different values for both é;;_; and ¢é.;.
The remaining values L;(c;) for j = 1,...,2(i — 1) of the surviving L(oy) at
state o; have to be updated.

In the following, we simplify the above notations and define

Lol ) = (L}, Lh, o Loy Loy (13.28)

for [ = 1,2, as the two sets of reliability measures corresponding to the two
candidate paths merging into state o; with transitions from states o}, and
o?_,, respectively. We refer to these two paths as path-1 and path-2, and
without loss of generality assume that path-1 is the surviving path. Similarly,
forl =1,2,

(o)) = (&, &, o1 E2ion) (13.29)
represent the two sets of decisions corresponding to path-1 and path-2, respec-
tively.

First, we consider the case &} # &, for some j € {1,...,2(: = 1)}, and
recall that path-1 and path-2 have a reliability difference equal to A;. Also,
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L; represents the reliability difference between path-1 and a code-sequence
represented by a path-m merging with path-1 between the decoding steps j and
(1-1), with & # &}, as shown in Figure 13.1. On the other hand, I‘Jf represents
the reliability difference between path-2 and a code-sequence represented by a
path-n merging with path-2 between the decoding steps j and (i — 1), with

an
J
Since no additional reliability information is available at state o;, we update

= ¢l. Hence, L2 does not need to be considered to update Lj(o:) in L(ay).
Lj(d.') = min{A.-, ia} ' (13.30)

Next, we consider the case é} = éf, for some j € {1,...,2(i — 1)}, so that
path-2 is no longer considered to update L;j(o;! in i(a‘-). However, path-n
previously defined now satisfies &7 # é;~. Since the reliability difference between
path-1 and path-nis A; + ﬁ? (i.e. the reliability difference between path-1 and
path-2 plus the reliability difference between path-2 and path-n), we obtain

Ilj(al) = min{A, + I:f, L}} (13.31)

The first version of SOVA that is equivalent to the above development was
introduced by Battail in 1987 [3]. This algorithm was later reformulated in con-
junction with the MAP algorithm in [9, 61} and fcrmally shown to be equivalent
to the Max-Log-MAP decoding algorithm in [34]. Consequently, the Max-Log-
MAP or SOVA decoding algorithm can be summarized as follows.

For each state o; of the state space L;(C):

Step 1: Perform the Viterbi decoding algoritlim to determine the surviver
metric M(o;) and the corresponding code-sequence &(o;).

Step 2: For j € {1,...,2(i = 1)}, set L;(0;) in L(0.) either to the value
; LTl it al A2 ; 4 T2 1YVl = a2
min{A;, L}} if &} # &, or to the value min{A; + L3, L1} if ¢} = é2.
Step 3: Set I:z,-_l(o',') and L:,’(U") in f,(a',-) to the value A;.
In [39], a simplified version of SOVA is presented. It is proposed to update
IZ,-(a’.-), for j = 1,2,...,2(i — 1), only when c;- # c_";. Hence (13.30) remains
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unchange while (13.31) simply becomes:
Lj(o:) = L}. (13.32)

Consequently, the values I:} are no longer needed in the updating rule, so that
this simplified version of SOVA is easier to implement. At the BER 1074, its
performance degradation with respect to the MAP decoding algorithm is about
0.6 — 0.7 dB coding gain loss, against 0.3 — 0.4 dB loss for the Max-Log-MAP
decoding algorithm.

13.3 BIT ERROR PROBABILITY OF MLD

In many practical applications, soft output information is not needed and only
the binary decoded codeword is delivered by the decoder. However, it is still
desirable to minimize the bit error probability rather than the word error prob-
ability. In such cases, the SOVA has no advantage over MLD since both algo-

_rithms deliver the same binary decoded sequence. Although the MAP decoding
algorithm minimizes the decoding bit error probability, no significant improve-
ment is observed over the bit error probability associated with MLD if properly
implemented. Consequently, MLD remains to be the practical solution due to
its much lower computational cost and implementation flexibility. However,
when a word is in error, different mappings between the information sequences
and the code sequences may result in a different number of bits in error, and
hence a different average bit error probability.

As described in Chapter 3, the trellis diagram for an (N, K)) linear block
code is constructed from its TOGM. A trellis-based ML decoder simply finds
the most likely path and its corresponding codeword among the 2K possible
paths that represent all the codewords generated by the TOGM. Therefore, a
trellis-based decoder can be viewed as a device which searches for the most
likely codeword out of the set of the 2K codewords generated by the TOGM,
independent of the mapping between information sequences and codewords. It
follows that the mapping between information sequences and the 2K codewords
generated by the TOGM, or equivalently the encoder, can be modified without
modifying the trellis-based determination of the most likely codeword. The
corresponding information sequence is then retrieved from the knowledge of
the mapping used by the encoder. Consequently, a trellis-based ML decoder
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can be viewed as the cascade of two elements: (1) a trellis search device which
delivers the most likely codeword of the code gen=rated by the TOGM; and (2)
an inverse mapper which retrieves the information sequence from the delivered
codeword. Although all mappings produce the same word error probability,
different mappings may produce different bit error probabilities.

Different mappings can be obtained from the TOGM by applying elementary
row additions and row permutations to this matrix. Let G, denote the TOGM
of the code considered, and let G,, denote the rew matrix. If G,, is used for
encoding, then the inverse mapper is represented by the right inverse of G,,.
Since this mapping is bijective (or equivalently, G, has full-rank K) and thus
invertible, the right inverse of G, is guaranteed to exist. In [33], it is shown
that for many good codes, the best strategy is to have the K columns of the
K x K identity matrix Ix in G, (in reduced 2chelon form). Based on the
particular structure of the TOGM G,, this is readily realized in K steps of
Gaussian elimination as follows: For 1 <1 < K, assume that G,,(i — 1) is the
matrix obtained at step-(i — 1), with G,.(0) = G, and G,,(K) = G,.. Let
¢ = (c},c3,...,c%)T denote the column of G,,(i — 1) that contains the leading
‘1" of the i-th row of Gm(i — 1). Thenec} =1landcl,, =cl , = =ck =0.
For 1 € j € i¢—1, add row-i to row-j in G,(i -- 1) if c; = 1. This results in
matrix G (i). For i = K, Gm(K) = G contains the K columns of Ix with
the same order of appearance. This matrix is :aid to be in reduced echelon
form (REF), and is referred to as the REF matrix.

Now we perform the encoding based on G,, in REF instead of the TOGM G,.
Since both matrices generate the same 2K codewords, any trellis-based decoder
using the trellis diagram constructed from the TOGM G, can still be used to
deliver the most likely codeword. From the knowledge of this codeword and
the fact that G,, in REF was used for encoding, :he corresponding information
sequence is easily recovered by taking only the positions which correspond to the
columns of Ix. Note that this strategy is intuiti.vely correct since whenever a
code sequence delivered by the decoder is in errcr, the best strategy to recover
the information bits is simply to determine them independently. Otherwise,
errors propagate.
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Example 13.1 In Example 3.1, the TOGM of the (8,4) RM code is given by

1 1110000
01011010
G, =
00111100
0 00 01111
After adding rows 2 and 3 to row-1, we obtain
1 0010110
_ 01011010
Gm=100 111100
00001111

We can readily verify that G, and G, generate the same 16 codewords, so that
there is a one-to-one correspondence between the codewords generated by G
and the paths in the trellis diagram constructed from G. Once the trellis-based
decoder delivers the most likely codeword @ = (%1, 42,...,1s), the correspond-
ing information sequence & = (@y,62,a3,a4) is retrieved by identifying

a = ui,
a = U,
as = ujz,
ay = ‘usg

Figure 13.2 depicts the bit error probabilities for the (32,26) RM code with
encoding based on the TOGM and the REF matrix, respectively. The corre-
sponding union bounds obtained in [33] are also shown in this figure. We see
that there s a gap in error performance of about 1.0 dB and 0.2 dB at the BERs
10-1% and 10~8, respectively. Similar results have been observed for other good
block codes [33, 71]. The situation is different for good convolutional codes of
short to medium constraint lengths, for which the feedforward non-systematic
realizations outperform their equivalent feedback systematic realizations {80].
This can be explained by the fact that for short to medium constraint length
convolutional codes in feedforward form, the bit error probability is dominated
by error events of the same structures. Due to the small number of such struc-

tures, an efficient mapping that minimizes the bit error probability can be
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devised. This is no longer possible when the error performance is dominated
by numerous unstructured error events, such as for long constraint length good
convolutional codes or good block codes.

Based on these results, we may conclude: (1) although modest, the differ-
ence in bit error performance between encoding with the TOGM and the REF
is of the same order as the difference in bit error performances between MLD
and some sub-optimum low-complexity decoding methods; (2) the overall er-
ror performance of a conventional concatenated scheme with a RS outer code
performing algebraic decoding is subject to these differences; and most impor-
tantly (3) the gain is free, since only the encoding circuit and the retrieving
of the information sequence have to be modified. Furthermore this approach
can be used for trellis-based MAP or SOVA decodings if a likelihood measure
associated with each bit of the decoded information sequence, rather than each
bit of the decoded codeword is needed, as in [34, 39, 40].

This approach can be generalized to any soft decision decoding method.
In general, a particular decoding algorithm is based on a particular structure
of the code considered. For example, majority-logic-decoding of RM codes is
based on the generator matrices of these codes in their original form (presented
in Section 2.5), or trellis-based decoding of linear codes is based on the TOGM
of the code considered. Two cases are possible depending on whether the de-
coder delivers a codeword as in trellis-based decoding or directly an information
sequence as in majority-logic-decoding of RM codes. In the first case, the pro-
cedure previously described is generalized in a straightforward way, while in
the second case, the row additions performed to obtain G, from the generator
matrix corresponding to the decoding method considered are applied to the
delivered information sequence by the inverse mapper [33].



APPENDIX A
A Trellis Construction Procedure

To decode a linear block code with a trellis-based decoding algorithm, the
code trellis must be constructed to be used effectively in the decoding process.
Therefore, the construction must meet a number of basic requirements. In
the implementation of a trellis-based decoder, every state in the code trellis is
labeled. The label of a state is used as the index to the memory where the state
metric and the survivor into the state are storad. For efficient indexing, the
sequence required to label a state must be as short as possible. Furthermore,
the labels of two states at two boundary locations of a trellis section must
provide complete information regarding the adjacency of the two states and the
label of the composite branch connecting the two states, if they are adjacent,
in a simple way. In general, a composite branch label appears many times
in a section (see (6.13)). In order to compute the branch metrics efficiently,
all the distinct composite branch labels in a trellis section must be generated
systematically without duplication and stored ir: a block of memory. Then, for
each pair of adjacent states, the index to the memory storing the composite
branch label (or composite branch metric) between the two adjacent states
must be derived readily from the labels of the two states. To achieve this,
we must derive a condition that two composite branches have the same label,
and partition the parallel components in a trellis section into blocks such that
the parallel components in a block have the :ame set of composite branch
labels (see Section 6.4). The composite branch label sets for two different

257
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blocks are disjoint. This localizes the composite branch metric computation.
We can compute the composite branch metrics for ‘each representative parallel
component in a block independently. In this appendix, we present an efficient
procedure for constructing a sectionalized trellis for a linear block code that
meets all the above requirements. The construction makes use of the parallel
structure of a trellis section presented in Section 6.4.

A.1 A BRIEF REVIEW OF THE TRELLIS ORIENTED GENERATOR
MATRIX FOR A BINARY LINEAR BLOCK CODE

We first give a brief review of the trellis oriented generator matrix (TOGM)
for a binary linear block code introduced in Section 3.4. Let G be a binary
K x N generator matrix of a binary (N, K) linear code C. For 1 <2< K, let
1d(i) and tr(i) denote the column numbers of the leading ‘1’ and the trailing
‘1’ of the i-th row of G, respectively. G is called a TOGM if and only if for
1<i<i <K,

() < (i), (A.1)
tr(i) # tr(i). (A.2)

Let M be a matrix with r rows. Hereafter, for a submatrix M’ of M con-
sisting of a subset of the rows in M, the order of rows in M’ is assumed to be
the same as in M. For a submatrix M’ of M consisting of the i;-th row, the
i2-th row, ..., the i,-th row of M, let us call the set {i1,12,...,1p} as the row
number set of M’ (as a submatrix of M). M is said to be partitioned into
the submatrices My, M, ..., M,, if each row of M is contained in exactly one
submatrix M; with 1 < i < p. '

In Section 3.4, a TOGM G of C is partitioned into three submatrices, G},
G,{, and G (also shown in Figure 6.3), for 0 < h < N. The row number sets
of G¥, Gf, and G}, are {i: tr(i) < A}, {i: h < 1d(3)}, {i: 1d(i) < h < tr(i)},
respectively. G} and G,{ generate the past and future codes at time-h, Co
and Cj n, respectively (see Section 3.7). That is,

Con =T(GY), (A.3)
Cnn =T(G), (A.4)

where for a matrix M, (M) denotes the linear space generated by M.
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Since from (A.1) 1d(i) < 1d(i') for 1 < i < i’ £ K, the order of information
bits corresponds to the order of rows in G, and therefore, the row number sets
of G, G and G as submatrices of G correspond to A%, A3 and Af (refer
to Section 3.4), respectively. In this appendix, we put the TOGM in reverse
direction such that for 1 <i < i < K,

1d(3) # 14(8"), (A.5)
tr(i) > tr(i’). (A.6)

Using a TOGM in reverse order, we can store the states (or state metrics) at
the left end of a parallel component in consecutive memory cells using a simple
addressing method. This method is very useful for designing IC decoder. It
also reduces the actual computation time for a software decoder, since (the
metrics of ) the states at the left ends are accessed consecutively and computers
have cache memories.

For a binary m-tuple u = (uj,u2,...,um) and a set I = {i1,iz,...,ip} of p
positive integers with 1 <1, <13 <+ < i, <, define

p,(u) -% (u,-‘,u,-,,...,uip). (A?)

For convenience, for I = @, p;(u) £ ¢ (the null sequence). For a set U of
m-tuples, define

pi(U) £ {ps(u) : u € U}. (A.8)

For I ={h+1,h+2,...,h'}, psis denoted by ps n.
Then, for a partition {My,M3,...,M,} of M with r rows and v € {0,1}",
it follows from the definition of a row number set and {A.7) that

vM =pp, (V)M +pr,(v)Mz + - -+ pr, (V) My, (A.9)

where I; denotes the row number set of M, fo1r 1 < ¢ < u. If M; is further
partitioned into submatrices M;,, M;,, ..., then

pr(v)M: = pr, (pr,(v))M;, +pr,, (p1,(v))Ms, + -+, (A.10)

where [;,,1;,,..., denote the row number sets of M;,,M,,,... as submatrices
of M,‘.
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In the construction of the trellis section from time-h to time-k’, the subma-
trix G5 of G takes a key role. Let Iy denote the row number set of G} as a
submatrix G. Then, pi = |Ix], and the following property of state labeling by
the state defining information set (Section 4.1) holds.

The Key Property of State Labeling: Let L(do,0n,7) 2 L(og,0n) ©
L(oh,0y) be the set of paths in a code trellis for C that connects the initial
state oo to the final state oy through the state o), at time-h. There is a one-
to-one mapping ! from £4(C) to {0,1}** with 0 < h < N such that for
on € a(C) and a € {0,1}%,

aG € L(og,0n,0y), (A.11)
if and only if
pr.(a) = l(on). (A.12)
JAYAN

Here, [(o4) € {0,1}” is called the label of state 7). This state labeling is simply
the state labeling by the state defining information set given in Section 4.1. We

can readily see that
L(cy,on,05) =1{orn)G}, & Con ®Chn. (A.13)

Note that if p» = 0, G} is the empty matrix and I(os) = €. For convenience,
we define the product of € and the empty matrix as the zero vector.

A.2 STATE LABELING BY THE STATE DEFINING INFORMATION
SET AND COMPOSITE BRANCH LABEL

For o4 € Tx(C) and on € Tp(C) with Lo, on) # @, the composite branch
label L{oy,0n) can be expressed in terms of the labels of o4 and o}. Since

L(gg,0n,0n,05) £ L(co,on) 0 L(on,on)0 L{on,0oy)

= L(oo,0h,07)NL(c0,0n,07%),
it follows from the key property of state labeling that for a € {0,1}%,

aG € L(oo,0h,0n,0¢), (A.14)
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if and only if

pi(a) = lon), (A.15)
p1,.(a) How). (A.16)

Define Ip » and pp e as follows:

Ih'h' = Innly (A.l?)
prh = |Iawl (A-18)

Then In p = {i:1d(i) € h < k' < tr(i)} is the row number set of the submatrix
of G which consists of those rows in both G} and G},.. Let Gy}, denote this
submatrix. Let G4, G,{:;. and G{:ﬁ, denote the submatrices of G whose row
number sets as submatrices of G are Ix\Inn = {i: 1d(i) < h < tr(i) < A},
I\Inpn = {i: h < Id(i) € K" < tr(i)} and {i : A < ld(3) < tr(z) < h'},
respectively. Then,

Chnw =(GR)), (A.19)
and G is partitioned into G}, G5, Gp 5., GI3., G®, and G, (seeFigure 6.3).
From (A.3), (A.4), (A.9) and (A.19), we have that for a € {0,1}%, aG € C

can be expressed as
aG = p1, , (@)GR% + ity (@)GRE +Pr o, (8)GRS + 4, (A.20)

where 4 € Con @ Chn ® Chr N

Since h and h’ are fixed hereafter, we abbreviate p;._h:(G::’,’l,) as G®Y where
z € {s,f} and y € {s,p}. If aG € L(09,0n,0n,0y), then pyn(aG) =
apnn(G) € L{on,0n). Since L(os,0n) is 3 coset in pyn(C)/Cy,, (see
(3.18)), it follows from (A.20) that

L(on,on) = pr, . (@)G** +p101, . (@)G*P+pr 01, . (a)G/* +CF . (A21)

In the following, we will derive a relation betwzen L(o, 0p) and the labels of
states o, and o, {(on) and I(ox'). Lemma A.1 zives a simple relation between
Ihyht and Ih.

Lemma A.1 [, consists of the smallest py, », integersin I,.
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Proof: For i € I n, we have that h' < tr(i). For i’ € Iy\Ij ', we have that
tr(i') < h'. Hence, tr(i') < tr(i). From (A.6), we have i <i’.
VA

In general, there is no such a simple relation between Inn and Ip.

Let In: = {i1,i2,...,ip,,} With 1 <) < i3 < <ip,, be the row number
set of G, and let Iy »» = {ij"ij"""i"ﬂn_r.'} with 1 <ji < j2r < jp . <
pn be the row number set of G'},. By definition, the p-th row of G4, is the
i,-th row of G for 1 < p < pnr and the p-th row of Gy is the ij -th row of
G for 1 < p < pun. Hence, the p-th row of G3%, is the j,-th row of Gj..
That is, the row number set of ;',., as a submatrix of G},, denoted Jy/, is
Jn = {1142, +Jpp s }» and Jw 2 {1,2,...,pn} \ Ju is the row number set
of G{:’,;:'-

Suppose (A.14) holds. Then, from (A.15), (A.16) and Lemma A.1,

plh,h’(a) = p0~Ph.h'(l(ah)) = P.I,,,(l(o'h')), (A.22)
Pis\inn (@) = Py proon (L)), (A.23)
P, (@) =P, (How)). (A.24)

For simplicity, define

1)en) 2 pogp, . (l{an), (A.25)
P(on) £ poyponl(lon)) (A.26)
(o) & pu,.(ow)), (A.27)
{D(on) £ pj,.(How))- (A.28)

From (A.25) and (A.26), the label [(g,) of the state o, with 19(7),) = a and
1P (ay,) = B is given by
l(on) =aop. (A.29)

The label [(o4) of the state on with 1¢)(0) = e and [!)(on) = v can be
easily obtained from o and v using (A.27) and (A.28).

By summarizing (A.14) to (A.16), (A.22) to (A.26) and (A.28), a condition
for the adjacency between two states at time-h and time-h', and the composite
branch label between them (shown in Section 6.3) are given in Theorem A.1.
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Theorem A.1 For o, € L4(C) and op € L1/(C) with 0 < h < B’ < N,
L(on,on) # 0 if and only if

1) (ap) = 119 (on).
Also if L(op,on) # 0, then L(on,on) is given by
L(on,on) = 11(an)G** + 1P (a3)G*? + 1N (0n)G* + CF,. (A.30)
AA

We call {(9)(0,) (or I (on)) the first label part of o4 (or on) and 1P (a)
(or 1U)(on)) the second label part of o (or onr). Now we partition T4(C)
and Ty (C) into 2°».» blocks of the same size, respectively, in such a way that
two states are in the same block if and only if they have the same first label
part. For a € {0,1}#»+', a block, denoted £f, {or Lf,) in the above partition
of £x(C) (or Lp/(C)) is defined as

>

by
£e

{oh € TK(C) : 11 (74) = a}, (A.31)
{on € Zp(C): 1" (on) = a}. (A.32)

(>

The blocks £ and L§, correspond to S (an) and Sg(an) in Section 6.4, re-
spectively. That is, for any & € {0, 1}”*+’, a subgraph which consists of the set
of state at time-h, LF, the set of states at time-h’, L, and all the composite
branches between them form a parallel component. This parallel component is
denoted Ao. The total number of parallel comf onents in a trellis section from
time-h to time-h' is given by 27».»,

Since all states in £ U ¥, have the same first label part «, there is a one-
to-one mapping, denoted si o, from the set of the second label parts of the
states in £f, denoted L, to &f, and there is a one-to-one mapping, denoted
Sh'.a, from the set of the second label parts of the states in Lf,, denoted Ly,
to £2,. Then, Ly, = {0,1}?*=#s»', L), = {0,1}» ~#»»" and sj, o and sj o are
the inverse mappings of (P and I{/), respectively.

A.3 TRELLIS CONSTRUCTION

Now consider how to construct a trellis section. When we use a trellis diagram
for decoding, we have to store the state metric: for each state. Therefore, we
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must assign memory for each state. For a state o, we use the label (o) as the
index of the allocated memory, because: (1) I(o) is the shortest possible label
for o and is easy to obtain, and (2) as shown in Theorem A.1, the complete
information on L(o, o) is provided in a very simple way by [(#)(a},), I{P)(a},),
1) (an) and 1)) (on) which can be readily derived from {(o4) and I(on) by
(A.25) to (A.28).

If instead we use the state labeling by parity-check matrix for the states at
time-h, the label length becomes N — K. Since py, < min{N, N —K} (see (5.4)),
if p» < N — K, a linear mapping from {0,1}* ¥ to {0,1}#* which depends on
h in general is necessary to obtain the index of the memory.

The next problem is how to generate branch metrics of adjacent state pairs
and give access to them. The set of composite branch labels of the section from
time-h to time-h’, denoted Ly, s, is the set of the following cosets (see (3.18)):

Liw = paw(C)/Ciin- (A.33)

It follows from (A.30) that

Liw = {aG*’+BG*7? + 4G/ + Cilp : a € {0,1}7,
Be {0» l}ph—p“'h’»'Y € {0, l}p'-"Pn.m}. (A.34)

Each composite branch label appears

2K—k(Co_,.)—k(C,./_y)—k(ph,,.:(C))

times in the trellis section (see (6.13)).

Next we consider how to generate all the composite branch labels in Ly, »’
given by (A.34) without duplication. Suppose we choose submatrices G1* of
G**, GI? of G*P and G{* of G/** such that the rows in G}, G}, G!* and
G/'P are linearly independent and

Lh,h’ = {a]_Gs" + ﬁIG"p + ‘YIG," + C;lr‘h: oy € {0‘ l}r“‘,
B, € {0,1} 7, v, € {0,1}"*}, (A.35)
where r, 5, 5 and 77, denote the numbers of rows of G1*, G1P and G{“',

respectively. If we generate composite branch labels by using the right-hand
side of (A.35) and store @, G*** + B, G*P+~,G/*+C}!,, into a memory indexed
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with (a;,8,,7,), then the duplication can be avsided. The next requirement is
that theindex (a;,8,,7,) can be readily obtained from &, 8 and v. To provide
a good solution of the above problem, we first analyze the linear dependency
of rows in py »'(G).

For a TOGM G, pnn(G) consists of the disjoint submatrices G**, G*P,
G/, G/ and the all zero submatrices ps »'(G%) and pyn (GL,).

Lemma A.2 In ps n(G): (1) the rows in submatrices G/** and G/? are lin-
early independent; and (2) the rows in submatrices G*P and G/ are linearly
independent.

Proof: If the i-th row of G is in G/** or G/, then

h<ld(i) <h. (A.36)
Similarly, if the i-th row of G is in G*P or G/*, then
h < tr(i) < A'. (A.37)
Hence, (1) and (2) of the lemma follow from (A.1) and (A.2), respectively.
JAYAN

For two binary » x m matrices M and M’ and a binary linear block code Cg
of length m, we write
M= MI (mong)

if and only if every row in the matrix M — M’ is in Cy, where “—" denotes the
component-wise subtraction.

Partition G/** into two submatrices G§** anc G{** (see Figure A.1) by par-
titioning the rows of G/** in such a way that

1) the rowsin G/ **, G*P and G/*P are linearly independent, and
1
(2) each row of G is a linear combination of rows in GI*, G*? and G/ P,

Let v, denote the number of rows of Glf", and define vy £ pjr — ppp — 1y,
which is the number of rows of G/*.

Let e;,ey,...,€e,, be the first to the last rows of G[{". From conditions (1)
and (2) of the partitioning of G/>*, there are inique vﬁ” e {0,1}, vﬁz) €
{0,1}*7?x»" and u; € C}/,, such that

e;, = vEl)G{” + vﬁz)G"’” +u;, forl<i<y.
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Figure A.1.  Further partitioning of the TOGM G.

Let E() denote the vo x v, matrix whose i-th row is v} and E(?) denote the
vo X (pn — pr.n) matrix whose i-th row is vﬁz). Then, we have

Gl* = EVGI* + ERG*? (modCj,). (A.38)

G{*, GI*, E® and E® can be efficiently derived by using standard row

operations.
Next, partition G** into two submatrices Gg* and G} (see Figure A.1) by
partitioning the rows of G** in such a way that:

(1) the rows in G1*, G{**, G*P and G/ are linearly independent; and

(2) each row of GJ* is a linear combination of rows in G7"*, G{*, G*? and
G/e,
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Let ), denote the number of rows of G;*°, and define Ag £ pj 1 — A;, which
is the number of rows of Gg'*. In a similar way as the derivation of (A.38),
we can find a unique A\g x A; matrix F(!), a unique Ag X 14 matrix F(®) and a
unique Ag x (pn — pan') matrix F®) such that

Gyt = FOGH + FOGI* £ FOG*®  (modC}y). (A.39)

Let R and Q denote the row number sets of G{"* and G}"*, respectively. Define
R2{1,2,...,0n —paw}\R and @ £ {1,2,...,pnn }\Q. Then, from (A.9)

aG™ = pa(a)Gy® +pe(a)GY?®, for a € {0,1}r, (A.40)

16! = pa(v)G{* +pr(7)G]*, forye{0,1}n A, (A41)

It follows from (A.38) to (A.41) that for a € {0,1}**+, B € {0,1}"~~r.n
and Y€ {0' 1}Pu"m.h',
aG™* + BG*? + 4G/ + C}I),
= (pqla) +pa(a)F1)G}*
+(pa(e) F® + pa(v)E® + 3)G*7
+(po(@)F® + pr(Y) + p(VEW)G]" + Oy (A42)

Define
fa) & pola)+payla)EM, (A.43)
f®a,B,7) & po(a)F® +pa(v)E? +8, (A.44)
fa,y) & po(a)F® +prly) +pa(v)EY. (A.45)

When o, 8 and v run over {0,1}»»', {0,1}**#s»’ and {0,1}°»' ~P»»' re-
spectively, f!)(a) f*)(a, 8,7) and f¥(a, ) run over {0,1}, {0,1}7Pn
and {0,1}*, respectively. Hence, the set Lj 5/ of all composite branch labels
is given by

Law = {auGy*+pB,G"? +‘YlG{" +CHy
o € {0) 1}'\1,31 € {0, l}p"""h.h"n{l € {0,1}1/1}. (A.46)

Since the rows in G'*, G*?, G{* and G/ ire linearly independent, for
(a1,B1,7,) # (al,B1,7}), the cosets a; GI* + B,G*P + v,GI"* + Cy s and
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alGY* + B1G*? + v,G{"* + C}f), are disjoint. Consequently, the set of com-
posite branch labels of a parallel component A, with a € {0,1}Pr»' denoted
La, is given by

La & {04GY°+B,G*P +7,G{" +Cily
B, € {0,1} 7"~ v, € {0,1}"}, (A.47)

where a; = f((a) = pg(a) + pa(a)FV.

Theorem A.2 Let Q denote the row number sets of G}**, and define Q4
{1,2,...,pnn} \ Q. Two parallel components Ag and Aq+ With a and o' in
{0,1}#»»' are isomorphic up to composite branch labels, if and only if

pola + ') = (pg(a + &' ))F1V, (A.48)

where F() is defined in (A.39). If (A.48) does not hold, La and Lo’ are
disjoint.

Proof: (1) The only-if part: If a; 2 po(a) +pa(a)F) # o} 2 po(a’) +
po(a’)F), then Lo and Lo’ are mutually disjoint from (A.47).

(2) The if part: Suppose that (A.48) holds, that is, o = af. Let oo denote
the binary (pn — pn.ar)-tuple such that

PR(1a+a') = pQ(a + a')F(z). (A.49)
pPalla+a’) = 0. (A.50)
For any given state pair (o, 0n) € £ x Tf,, define (0},0},) € 2 x L9 as
1P (0h) = 1'"(c)) +pgla+a’)FP,
ie,oh = sha (P (on) + pola+ a')F®)), (A.51)
(1) + latar
i.e, O’;.‘: = Shga'(l(n (O'hl) + l°+°l). (A52)

19 (ah,)

Then, f(l)(a) = f“)(a'), f(z)(ail(p)(ah)vl(”(ah')) = f(z)(a"l(p)(dllh)'
11(a},)) and f® (e, 10 (on)) = fP(a,10)(0},)). Hence, it follows from
(A.30), and (A.42) to (A.45) that

L(on,on) = L{o},0%).
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Note that when o, runs over £Z, {(P)(05) runs cver Ly = {0,1}**~Prs* and
therefore, 8! (1P (o) + py(a + ') F(®)) defines a permutation of £2". Sim-
ilarly, sp o (I (on) + latar) defines a permutation of T, .

FaVa¥

Corollary A.1 The block of the isomorphic parallel components containing
Ao is given by

{Aata :po(e’) = py(a)FM), py(a') € {0,1}*}. (A.53)

Each block of the partition consists of 2*° identical parallel components, where
Ao is the number of rows of Gy™’.

AL
It is shown in [44] that ) is equal to Ap 4 (C) defined by (6.36).

Example A.1 Consider the RM3 ¢ code which is a (64,42) code. The second
section of the 8-section minimal trellis diagram T'({0,8,16,...,64}) for this
code consists of 16 parallel components, and they are partitioned into two
blocks. Each block of the partition consists of 22 identical parallel components,
Each parallel components has 8 states at time 3 and 64 states at time 16,
Hence, there are 2!3 = 16 x 8 x 64 composite branches in this trellis section.
However, there are only 2!° = 2 x 8 x 64 different composite branch labels.
AA

A.4 AN EFFICIENT TRELLIS CONSTRUCTION PROCEDURE

In this section, an efficient procedure for constructing the trellis section from
time-h to time-h’ is presented. First, we present a subprocedure, denoted
GenerateCBL(a), that generates the set of composite branch labels for a
representative parallel component A, in a block. From Corollary A.1, we can
choose the parallel component A, with ps(a) = O as the representative (in
(A.53), for any &, Aqtar With py(a’) = pg(a) is such one). Let a; 2 po(a).
Then, the subprocedure, GenerateCBL(a; ), gener ates the set of the composite
branch labels of the parallel component Aq, denoted Lq,:

La, = {oauG}"+7v,GI*+BG*?+C},, -
1 € {0’ l}ul,ﬁ € O, l}l’h—f’h,h'},
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and stores each composite branch label o, G{™ +v,Gf"* + BG*? + C)p» in the
memory at the index a, o, o 8. This makes it possible to store the composite
branch labels in the parallel component at consecutive memory locations.

It follows from (A.42) that for on € Tf and op € EF with i10)(0)) = «,
1P (o) = B and IY)(an) = v, the composite branch label, L(oh,on) =
aG** +vG/* + BG*? + C}[),, (or the maximum metric of L(oa, o)) is stored
in the memory with the following index: '

indx(e,8,7) £ (pq(a)+pa(a)F™) o (pa(@)F® +pr(Y) + pa(v)EM)
o(pg(e) F + pa(7)E® + B). (A.54)

[Trellis Construction Procedure Using Isomorphic Parallel Compo-
nents)
For every o, € {0,1}* {
Construct Lo,, by executing GenerateCBL(ay ).
(+ Construct isomorphic parallel components. )
For every ag € {0,1}% {
Let o be an element in {0, 1}”*+" such that

pola)=a; + agF, and PQ(Q) = ag.

Construct Aq by executing ConstructA{a) subprocedure stated below.

FAYAN

The following subprocedure ConstructA(c) to construct A(a) is one to list
(l(cr;.),l(a’h-),indx(l(’)(a;,),l(”)(cr;.),lm(oh')))

for every state pair (s, 0n) € Zf x Ef..

Subprocedure ConstructA(a):
(* Construct a parallel component Ag. *)
For every v € {0,1}7» ~Pan’ {

For every B € {0,1}*»~#»» {



APPENDIX A: A TRELLIS CONSTRUCTION PROCEDURE 271

Output (I(sh,a(B8)), {(sn.a (7)), indx(c, B,7)).
}
}

Al
Note that the labels, {(sh,a(B)), {(sh,a(7Y)) ard indx(a,B,7) are given by
(A.29), (A.27) and (A.28), and (A.54), respectively.
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decoding, 13
decomposable code, 120
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encoding, 7
extended BCH, 111-113, 216-219
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punctured code, 39
Reed-Muller,
Boolean representation, 17-22
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minimum weight subtrellis, 110-
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squaring construction, 118-127
terminated convolutional code,
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|ulu + v construction, 20-22

Reed-Solomon, 69
squaring construction, 115-120
weight distribution, 12
weight profile, 12
bound
Wolf, 60-61
branch
branch complexity,
N-section trellis, 64
sectionalized trellis, 74-78
branch complexity profile, 77
branch dimension profile, 77
parallel branches, 72, 74
butterfly subtrellis, 188

Cartesian product, see trellis
code decomposition, 120
coded modulation, 137
compare-select-add (CSA), 189-191
composite branches, see parallel branches
concatenated code, see block code
connectivity, see state connectivity
constraint length, 30, 151
convolutional code, 150-152
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puncturing matrix, 156
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Chase decoding algorithm-I1, 227
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differential trellis decoding, 186-193
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iterative low-weight search, 221-241
maximum a-posteriori (MAP), 243~
247
maximum likelihood (ML), 14-17
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Max-Log-MAP decoding, 247-252
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CombCBT procedure, 202-208
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composite branch label set, 211
MakeCBT procedure, 201-202
RMLD-(G,U) algorithm, 215-216
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Viterbi decoding, 176-177
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IC implementation, 179-186
differential trellis decoding, see decoding
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block code, 7

coavolutional code, 152
extended BCH code, see block code
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reduced echelon form, 253

hard-decision decoding, 13
iterativa low-weight search, see decoding
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labeling, see state labeling

linear block code, 6
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decoding
Max-Log-MAP decoding, see decoding
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construction, 78-84
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optima ity test threshold, 226-227



optimum sectionalization, see sectional-
ization
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parallel decomposition of trellises, 93-100
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permutation, see symbol permutation
profile, 28
branch complexity profile, 77
branch dimension profile, 77
state space complexity profile, 28
state space dimension profile, 28
punctured convolutional code, see convo-
lutional code
purging procedure, see subtrellis

radix number, 76

rate, 9

recursive MLD, see decoding
reduced echelon form matrix, 253
Reed-Muller codes, see block code
row number set, 258

sectionalization, 71
optimum, 177-178, 217-219
uniform, 72
Shannon product, see trellis
soft-decision decoding, 13
SOVA decoding, see decoding
span, 30
active span, 30
squaring construction, see block code
state
adjacent states, 28
final state, 24
initial state, 24
state complexity, 60-62
state connectivity, 76
state labeling, 43
information set, 4447, 260-263
parity-check matrix, 48-55
state space, 24, 31,
state space complexity, 28
state space dimension, 28
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state transition, 24, 32
subcode, 9
subtrellis, 72
butterfly subtrellis, 188
low-weight subtrellis, 100-113
purging procedure, 102-104
symbol permutation, 64, 217

terminated convolutional code, see con-
volutional code
test
optimality test, 226-227
test error pattern, 227-228
threshold
nearest neighbor test threshold,
226-227
optimality test threshold, 226-227
trellis
Cartesian product, 136-137
concatenated code, 144-147
construction procedure, 43-47, 48~
55, 78-84, 263-271
convolutional code, 152-155
minimal, see minimal trellis
minimum-weight trellis, 101-103
construction, 104-113
mirror symmetry, 55-57
N-section trellis, 27
parallel structure, 73, 85-91
sectionalized trellis, see sectionaliza-
tion
Shannon product, 127-136
squaring construction, 120-127
time invariant trellis, 25
time varying trellis, 27, 35-36
trellis complexity, 59
trellis diagram, 2, 24
trellis oriented form, 29
trellis oriented generator matrix, see
generator matrix
reverse trellis oriented form, 55

uniform structure, 211
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U-block, 88-91, 211-213 vertex, see state

Viterbi decoding, see decoding
uniform sectionalization, see sectionaliza-
tion
weight distribution, 12
uniform trellis structure, 211 weight profile, 12



